Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
J Korean Med Sci ; 39(5): e53, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317451

ABSTRACT

BACKGROUND: Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department. METHODS: This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO2/FIO2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine). The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley's additive explanations (SHAP). RESULTS: Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756-0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626-0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results. CONCLUSION: Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.


Subject(s)
Emergency Service, Hospital , Sepsis , Humans , Albumins , Lactic Acid , Machine Learning , Sepsis/diagnosis
2.
J Clin Med ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068273

ABSTRACT

Smoking remains a primary cause of cancers, cardiovascular and respiratory diseases and death. Globally, efforts have been made to reduce smoking rates, but the addictive nature of nicotine, a key component of tobacco, makes cessation challenging for smokers. Medical interventions including medical advice and pharmacotherapies are effective methods for smoking cessation. The frequency of medical interventions correlates with success in smoking cessation. This study aims to compare the characteristics of the patients who visited the smoking cessation clinic once with those who visited more than once, in order to identify factors that are associated with repeat clinic visits. A total of 81 patients who have visited the smoking cessation clinic in Kangwon National University Hospital were included. Patients answered the questionnaire at their first visit. If the patient visited only once, the outcome was defined as negative and if the patient visited more than once, the outcome was defined as positive. The proportion of patients who answered "within 5 min" to the Fagerstrom Test for Nicotine Dependence's (FTND) 1st question and answered "yes" to the FTND's 6th question was higher in the negative outcome group. In the logistic regression, patients who had withdrawal symptoms previously were associated with positive outcomes (adjusted OR 3.466, 95% CI 1.088-11.034 and p value = 0.0354). Withdrawal symptoms during previous attempts were positively related to visiting the clinic more than once.

3.
Oncoimmunology ; 12(1): 2259212, 2023.
Article in English | MEDLINE | ID: mdl-37744990

ABSTRACT

Antiangiogenic therapy is a recognized method for countering the immunosuppressive tumor microenvironment (TME) and improving anti-tumor immunity. PB101 is a glycosylated decoy receptor that binds to VEGF-A and PlGF with high affinity, based on the VEGFR1 backbone. Here, we elucidated PB101-induced remodeling of tumor angiogenesis and immunity, which enhances anti-PD-L1 immune checkpoint blockade. PB101 inhibited tumor growth by suppressing angiogenesis and enhancing CD8+ T cell infiltration into the tumors. PB101 induced robust reprogramming of antitumor immunity and activates intratumoral CD8+ T cells. Anti-tumor efficacy of PB101 is mostly dependent on CD8+ T cells and IFN-γ. PB101 reprograms tumor immunity in a manner distinct from that of the conventional VEGF decoy receptor, VEGF-trap. With its potent immune-modulating capability, PB101 synergizes with an anti-PD-L1, triggering strengthened antitumor immunity. Combining PB101 and anti-PD-L1 could establish durable protective immunity against tumor recurrence and metastasis. The findings of this study offer scientific rationales for further clinical development of PB101, particularly when used in combination with immune checkpoint inhibitors, as a potential treatment for advanced cancers.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Vascular Endothelial Growth Factor A , Immune Checkpoint Inhibitors , Neoplasms/immunology , Neoplasm Metastasis
4.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506203

ABSTRACT

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Subject(s)
Axons , Nerve Regeneration , Neurons , Peripheral Nerve Injuries , Adult , Humans , Axons/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Interneurons/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism
5.
Small ; 19(43): e2300544, 2023 10.
Article in English | MEDLINE | ID: mdl-37381624

ABSTRACT

Although stimulator of interferon genes (STING) agonists has shown great promise in preclinical studies, the clinical development of STING agonist therapy is challenged by its limited systemic delivery. Here, positively charged fusogenic liposomes loaded with a STING agonist (PoSTING) are designed for systemic delivery and to preferentially target the tumor microenvironment. When PoSTING is administered intravenously, it selectively targets not only tumor cells but also immune and tumor endothelial cells (ECs). In particular, delivery of STING agonists to tumor ECs normalizes abnormal tumor vasculatures, induces intratumoral STING activation, and elicits robust anti-tumor T cell immunity within the tumor microenvironment. Therefore, PoSTING can be used as a systemic delivery platform to overcome the limitations of using STING agonists in clinical trials.


Subject(s)
Liposomes , Neoplasms , Humans , Tumor Microenvironment , Endothelial Cells , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Immunotherapy
6.
ACS Appl Mater Interfaces ; 15(12): 15059-15070, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36809905

ABSTRACT

Rare cells, such as circulating tumor cells or circulating fetal cells, provide important information for the diagnosis and prognosis of cancer and prenatal diagnosis. Since undercounting only a few cells can lead to significant misdiagnosis and incorrect decisions in subsequent treatment, it is crucial to minimize cell loss, particularly for rare cells. Moreover, the morphological and genetic information on cells should be preserved as intact as possible for downstream analysis. The conventional immunocytochemistry (ICC), however, fails to meet these requirements, causing unexpected cell loss and deformation of the cell organelles which may mislead the classification of benign and malignant cells. In this study, a novel ICC technique for preparing lossless cellular specimens was developed to improve the diagnostic accuracy of rare cell analysis and analyze intact cellular morphology. To this end, a robust and reproducible porous hydrogel pellicle was developed. This hydrogel encapsulates cells to minimize cell loss from the repeated exchange of reagents and prevent cell deformation. The soft hydrogel pellicle allows stable and intact cell picking for further downstream analysis, which is difficult with conventional ICC methods that permanently immobilize cells. The lossless ICC platform will pave the way for robust and precise rare cell analysis toward clinical practice.


Subject(s)
Neoplasms , Humans , Immunohistochemistry , Porosity , Hydrogels
7.
J Clin Med ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202043

ABSTRACT

Pressure ulcers (PUs) are a prevalent skin disease affecting patients with impaired mobility and in high-risk groups. These ulcers increase patients' suffering, medical expenses, and burden on medical staff. This study introduces a clinical decision support system and verifies it for predicting real-time PU occurrences within the intensive care unit (ICU) by using MIMIC-IV and in-house ICU data. We develop various machine learning (ML) and deep learning (DL) models for predicting PU occurrences in real time using the MIMIC-IV and validate using the MIMIC-IV and Kangwon National University Hospital (KNUH) dataset. To address the challenge of missing values in time series, we propose a novel recurrent neural network model, GRU-D++. This model outperformed other experimental models by achieving the area under the receiver operating characteristic curve (AUROC) of 0.945 for the on-time prediction and AUROC of 0.912 for 48h in-advance prediction. Furthermore, in the external validation with the KNUH dataset, the fine-tuned GRU-D++ model demonstrated superior performances, achieving an AUROC of 0.898 for on-time prediction and an AUROC of 0.897 for 48h in-advance prediction. The proposed GRU-D++, designed to consider temporal information and missing values, stands out for its predictive accuracy. Our findings suggest that this model can significantly alleviate the workload of medical staff and prevent the worsening of patient conditions by enabling timely interventions for PUs in the ICU.

8.
J Korean Med Sci ; 37(50): e349, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36573386

ABSTRACT

BACKGROUND: The preventable trauma death rate survey is a basic tool for the quality management of trauma treatment because it is a method that can intuitively evaluate the level of national trauma treatment. We conducted this study as a national biennial follow-up survey project and report the results of the review of the 2019 trauma death data in Korea. METHODS: From January 1, 2019 to December 31, 2019, of a total of 8,482 trauma deaths throughout the country, 1,692 were sampled from 279 emergency medical institutions in Korea. All cases were evaluated for preventability of death and opportunities for improvement using a multidisciplinary panel review approach. RESULTS: The preventable trauma death rate was estimated to be 15.7%. Of these, 3.1% were judged definitive preventable deaths, and 12.7% were potentially preventable deaths. The odds ratio for preventable traumatic death was 2.56 times higher in transferred patients compared to that of patients who visited the final hospital directly. The group that died 1 hour after the accident had a statistically significantly higher probability of preventable death than that of the group that died within 1 hour after the accident. CONCLUSION: The preventable trauma death rate for trauma deaths in 2019 was 15.7%, which was 4.2%p lower than that in 2017. To improve the quality of trauma treatment, the transfer of severe trauma patients to trauma centers should be more focused.


Subject(s)
Trauma Centers , Wounds and Injuries , Humans , Follow-Up Studies , Korea , Probability , Cause of Death , Republic of Korea/epidemiology , Retrospective Studies
9.
Cancers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36497467

ABSTRACT

Renal cell carcinoma (RCC) is the most common type of kidney malignancy worldwide with Pembrolizumab and axitinib treatment (Pembro/Axi) amongst the most effective first-line immunotherapies for advanced RCC. However, it remains difficult to predict treatment response and early resistance. Therefore, we evaluated whether baseline serum interleukin-6 (IL-6) could be a predictive biomarker. Between November 2019 and December 2021, 58 patients with advanced RCC were enrolled, administered first-line Pembro/Axi, and baseline blood samples were analyzed using flow cytometry. The mean baseline serum IL-6 concentration was 8.6 pg/mL in responders and 84.1 pg/mL in patients with progressive disease. The IL-6 cut-off value was set at 6.5 pg/mL using time-dependent receiver operating characteristic curves, with 37.9% of patients having high baseline serum IL-6 levels and 62.1% having low levels. Objective response rates were 58.3% and 36.4% in low and high IL-6 groups, respectively. Overall survival and progression-free survival were longer in patients with low IL-6 levels than in those with high levels. High IL-6 levels were related to reduced interferon-γ and tumor necrosis factor-α production from CD8+ T cells. Overall, high baseline serum IL-6 levels were associated with worse survival outcomes and reduced T-cell responses in Pembro/Axi-treated advanced RCC patients.

10.
Stem Cell Res Ther ; 13(1): 433, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056418

ABSTRACT

Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.


Subject(s)
Exosomes , Pluripotent Stem Cells , Pulmonary Fibrosis , Exosomes/metabolism , Humans , Lung/pathology , Macrophages/metabolism , Pluripotent Stem Cells/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/therapy
11.
Mol Cells ; 45(12): 869-876, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36172978

ABSTRACT

Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.


Subject(s)
Antineoplastic Agents , Lactoylglutathione Lyase , Neoplasms , Humans , Neoplasms/drug therapy , Oxidative Stress , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lactoylglutathione Lyase/metabolism
12.
Lab Chip ; 22(17): 3268-3276, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35916196

ABSTRACT

Progress in neurological research has experienced bottlenecks owing to the limited availability of purified primary neurons. Since neuronal cells are non-proliferative, it is necessary to obtain purified neurons from animal models or human patients for experimental work. However, currently available methods for purifying primary neurons are time-consuming (taking approximately 1 week), and suffer from insufficient viability and purity. Here, we report a method for rapid enrichment of neurons from the mouse embryonic dorsal root ganglion (DRG), using a fully-automated continuous centrifugal microfluidics (CCM) based neuron purification disc (NPD). Non-neuronal cells were removed via negative depletion by combining density gradient centrifugation and immunomagnetic separation. The CCM-NPD platform enables effective isolation of intact neurons within 13 min, which is approximately 800 times faster than the conventional chemical purification method. Furthermore, the neurons purified using the CCM-NPD platform showed better neurite growth, along with higher viability (93.5%) and purity (97.0%) after 1 week of culture, compared to the chemical purification method. Therefore, the proposed automated and rapid system yields purified DRG neurons with high viability and purity, while avoiding the use of harsh chemicals. We believe this system will significantly mitigate the shortage of purified primary neurons and advance neurological research.


Subject(s)
Ganglia, Spinal , Microfluidics , Animals , Cell Separation/methods , Cells, Cultured , Humans , Immunomagnetic Separation , Mice , Neurons
13.
Theranostics ; 12(8): 3676-3689, 2022.
Article in English | MEDLINE | ID: mdl-35664056

ABSTRACT

Understanding cancer heterogeneity is essential to finding diverse genetic mutations in metastatic cancers. Thus, it is critical to isolate all types of CTCs to identify accurate cancer information from patients. Moreover, full automation robustly capturing the full spectrum of CTCs is an urgent need for CTC diagnosis to be routine clinical practice. Methods: Here we report the full capture of heterogeneous CTC populations using fully automated, negative depletion-based continuous centrifugal microfluidics (CCM). Results: The CCM system demonstrated high performance (recovery rates exceeding 90% and WBC depletion rate of 99.9%) across a wide range of phenotypes (EpCAM(+), EpCAM(-), small-, large-sized, and cluster) and cancers (lung, breast, and bladder). Applied in 30 lung adenocarcinoma patients harboring epidermal growth factor receptor (EGFR) mutations, the system isolated diverse phenotypes of CTCs in marker expression and size, implying the importance of unbiased isolation. Genetic analyses of intra-patient samples comparing cell-free DNA with CCM-isolated CTCs yielded perfect concordance, and CTC enumeration using our technique was correlated with clinical progression as well as response to EGFR inhibitors. Conclusion: Our system also introduces technical advances which assure rapid, reliable, and reproducible results, thus enabling a more comprehensive application of robust CTC analysis in clinical practice.


Subject(s)
Neoplastic Cells, Circulating , Automation , Cell Line, Tumor , Cell Separation/methods , Epithelial Cell Adhesion Molecule/genetics , ErbB Receptors/genetics , Humans , Microfluidics/methods , Neoplastic Cells, Circulating/metabolism
14.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35764365

ABSTRACT

BACKGROUND: Toll-like receptors (TLRs) are critical innate immune sensors that elicit antitumor immune responses in cancer immunotherapy. Although a few TLR agonists have been approved for the treatment of patients with early-stage superficial cancers, their therapeutic efficacy is limited in patient with advanced invasive cancers. Here, we identified the therapeutic role of a TLR2/3 agonist, L-pampo (LP), which promotes antitumor immunity and enhances the immune checkpoint blockade. METHODS: We generated LP by combining a TLR2 agonist, Pam3CSK4, with a TLR3 agonist, Poly (I:C). Immune responses to stimulation with various TLR agonists were compared. Tumor-bearing mice were intratumorally treated with LP, and their tumor sizes were measured. The antitumor effects of LP treatment were determined using flow cytometry, multiplexed imaging, and NanoString nCounter immune profiling. The immunotherapeutic potential of LP in combination with α-programmed cell death protein-1 (PD-1) or α-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) was evaluated in syngeneic MC38 colon cancer and B16F10 melanoma. RESULTS: The LP treatment induced a potent activation of T helper 1 (Th1) and 2 (Th2)-mediated immunity, tumor cell apoptosis, and immunogenic tumor cell death. Intratumoral LP treatment effectively inhibited tumor progression by activating tumor-specific T cell immunity. LP-induced immune responses were mediated by CD8+ T cells and interferon-γ, but not by CD4+ T cells and CD25+ T cells. LP simultaneously activated TLR2 and TLR3 signaling, thereby extensively changing the immune-related gene signatures within the tumor microenvironment (TME). Moreover, intratumoral LP treatment led to systemic abscopal antitumor effects in non-injected distant tumors. Notably, LP treatment combined with ɑPD-1 and ɑCTLA-4 further enhanced the efficacy of monotherapy, resulting in complete tumor regression and prolonged overall survival. Furthermore, LP-based combination immunotherapy elicited durable antitumor immunity with tumor-specific immune memory in colon cancer and melanoma. CONCLUSIONS: Our study demonstrated that intratumoral LP treatment improves the innate and adaptive antitumor immunity within the TME and enhances the efficacy of αPD-1 and αCTLA-4 immune checkpoint blockade.


Subject(s)
Colonic Neoplasms , Melanoma , Adjuvants, Immunologic , Animals , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunity , Immunologic Factors , Immunotherapy , Mice , Toll-Like Receptor 2 , Toll-Like Receptor 3 , Tumor Microenvironment
15.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35556128

ABSTRACT

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Subject(s)
Axons , Nerve Regeneration , 3' Untranslated Regions/genetics , Animals , Axons/metabolism , Mice , Nerve Regeneration/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Sciatic Nerve/metabolism
16.
Dev Reprod ; 26(4): 155-163, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36817355

ABSTRACT

Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-ß, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 µg/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.

17.
Oncoimmunology ; 10(1): 2005280, 2021.
Article in English | MEDLINE | ID: mdl-34858729

ABSTRACT

Kynurenine (Kyn) is a key inducer of an immunosuppressive tumor microenvironment (TME). Although indoleamine 2,3-dioxygenase (IDO)-selective inhibitors have been developed to suppress the Kyn pathway, the results were not satisfactory due to the presence of various opposing mechanisms. Here, we employed an orally administered novel Kyn pathway regulator to overcome the limitation of anti-tumor immune response. We identified a novel core structure that inhibited both IDO and TDO. An orally available lead compound, STB-C017 (designated hereafter as STB), effectively inhibited the enzymatic and cellular activity of IDO and TDO in vitro. Moreover, it potently suppressed Kyn levels in both the plasma and tumor in vivo. STB monotherapy increased the infiltration of CD8+ T cells into TME. In addition, STB reprogrammed the TME with widespread changes in immune-mediated gene signatures. Notably, STB-based combination immunotherapy elicited the most potent anti-tumor efficacy through concurrent treatment with immune checkpoint inhibitors, leading to complete tumor regression and long-term overall survival. Our study demonstrated that a novel Kyn pathway regulator derived using deep learning technology can activate T cell immunity and potentiate immune checkpoint blockade by overcoming an immunosuppressive TME.


Subject(s)
Deep Learning , Kynurenine , CD8-Positive T-Lymphocytes , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
18.
Yonsei Med J ; 62(12): 1136-1144, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34816644

ABSTRACT

PURPOSE: Considering the risk of coronavirus disease (COVID-19) transmission through infected droplets, emergency department (ED) operations in response to febrile patients should be planned. We investigated the general and clinical characteristics of febrile patients visiting the ED and changes in admission rates via the ED during the COVID-19 outbreak. MATERIALS AND METHODS: We performed a retrospective analysis of prospectively collected patients who visited 402 EDs in the Republic of Korea with febrile symptoms between January 27 and May 31, 2020 and compared them to those enrolled before the COVID-19 outbreak. The primary outcome was admission rate; the secondary outcome was length of stay (LOS) in the ED. RESULTS: In total, 266519 patients had febrile symptoms at ED presentation after the COVID-19 outbreak. In 2019, before the outbreak, there were 437762 patients. The rate of ED visits among pediatric patients (aged <15 years) decreased to 21.4% after the COVID-19 outbreak, compared with 41.8% in 2019. The proportion of patients admitted after ED management was higher after the outbreak (31.3%) than before (25.2%). The adjusted odds ratio for admission was 1.04 (95% confidence interval: 1.02-1.05) after the outbreak. Compared to before the COVID-19 outbreak, the median ED LOS increased by 16 min after the outbreak. CONCLUSION: This study confirmed that admission rates and ED LOS increased for febrile patients visiting the ED after the COVID-19 outbreak. This could provide evidence for developing ED-related strategies in response to the ongoing COVID-19 outbreak and other infectious disease pandemics.


Subject(s)
COVID-19 , Child , Disease Outbreaks , Emergency Service, Hospital , Humans , Retrospective Studies , SARS-CoV-2
19.
J Am Chem Soc ; 143(45): 18838-18843, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34752071

ABSTRACT

The development of adsorbents with molecular precision offers a promising strategy to enhance storage of hydrogen and methane─considered the fuel of the future and a transitional fuel, respectively─and to realize a carbon-neutral energy cycle. Herein we employ a postsynthetic modification strategy on a robust metal-organic framework (MOF), MFU-4l, to boost its storage capacity toward these clean energy gases. MFU-4l-Li displays one of the best volumetric deliverable hydrogen capacities of 50.2 g L-1 under combined temperature and pressure swing conditions (77 K/100 bar → 160 K/5 bar) while maintaining a moderately high gravimetric capacity of 9.4 wt %. Moreover, MFU-4l-Li demonstrates impressive methane storage performance with a 5-100 bar usable capacity of 251 cm3 (STP) cm-3 (0.38 g g-1) and 220 cm3 (STP) cm-3 (0.30 g g-1) at 270 and 296 K, respectively. Notably, these hydrogen and methane storage capacities are significantly improved compared to those of its isoreticular analogue, MFU-4l, and place MFU-4l-Li among the best MOF-based materials for this application.

20.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34326064

ABSTRACT

Increased mTOR activity has been shown to enhance regeneration of injured axons by increasing neuronal protein synthesis, while PTEN signaling can block mTOR activity to attenuate protein synthesis. MicroRNAs (miRs) have been implicated in regulation of PTEN and mTOR expression, and previous work in spinal cord showed an increase in miR-199a-3p after spinal cord injury (SCI) and increase in miR-21 in SCI animals that had undergone exercise. Pten mRNA is a target for miR-21 and miR-199a-3p is predicted to target mTor mRNA. Here, we show that miR-21 and miR-199a-3p are expressed in adult dorsal root ganglion (DRG) neurons, and we used culture preparations to test functions of the rat miRs in adult DRG and embryonic cortical neurons. miR-21 increases and miR-199a-3p decreases in DRG neurons after in vivo axotomy. In both the adult DRG and embryonic cortical neurons, miR-21 promotes and miR-199a-3p attenuates neurite growth. miR-21 directly bound to Pten mRNA and miR-21 overexpression decreased Pten mRNA levels. Conversely, miR-199a-3p directly bound to mTor mRNA and miR-199a-3p overexpression decreased mTor mRNA levels. Overexpressing miR-21 increased both overall and intra-axonal protein synthesis in cultured DRGs, while miR-199a-3p overexpression decreased this protein synthesis. The axon growth phenotypes seen with miR-21 and miR-199a-3p overexpression were reversed by co-transfecting PTEN and mTOR cDNA expression constructs with the predicted 3' untranslated region (UTR) miR target sequences deleted. Taken together, these studies indicate that injury-induced alterations in miR-21 and miR-199a-3p expression can alter axon growth capacity by changing overall and intra-axonal protein synthesis through regulation of the PTEN/mTOR pathway.


Subject(s)
Axons , MicroRNAs , PTEN Phosphohydrolase , TOR Serine-Threonine Kinases , Animals , Axons/metabolism , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , RNA, Messenger , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...